Стандартное отклонение процентов

Результат расчёта
Стандартное отклонение процентов {$ numbers.length $} {$ Word.digit_pluralize(numbers.length) $}: {$ result|number:4 $}

Среднеквадратическое или стандартное отклонение — статистический показатель, оценивающий величину колебаний числовой выборки вокруг ее среднего значения. Практически всегда основное количество величин распределяется в пределе плюс-минус одно стандартное отклонение от среднего значения.

Определение

Среднеквадратическое отклонение — это квадратный корень из среднего арифметического значения суммы квадратов отклонений от среднего значения. Строго и математично, но абсолютно непонятно. Это словесное описание формулы расчета стандартного отклонения, но чтобы понять смысл этого статистического термина, давайте разберемся со всем по порядку.

Представьте себе тир, мишень и стрелка. Снайпер стреляет в стандартную мишень, где попадание в центр дает 10 баллов, в зависимости от удаления от центра количество баллов снижается, а попадание в крайние области дает всего 1 балл. Каждый выстрел стрелка — это случайное целое значение от 1 до 10. Изрешеченная пулями мишень — прекрасная иллюстрация распределения случайной величины.

Математическое ожидание

Наш начинающий стрелок долго практиковался в стрельбе и заметил, что он попадает в разные значения с определенной вероятностью. Допустим, на основании большого количества выстрелов он выяснил, что попадает в 10 с вероятностью 15 %. Остальные значения получили свои вероятности:

  • 9 — 25 %;
  • 8 — 20 %;
  • 7 — 15 %;
  • 6 — 15 %;
  • 5 — 5 %;
  • 4 — 5 %.

Сейчас он готовится сделать очередной выстрел. Какое значение он выбьет с наибольшей вероятностью? Ответить на этот вопрос нам поможет математическое ожидание. Зная все эти вероятности, мы можем определить наиболее вероятный результат выстрела. Формула для вычисления математического ожидания довольно проста. Обозначим значение выстрела как C, а вероятность как p. Математическое ожидание будет равно сумме произведение соответствующих значений и их вероятностей:

M = ∑ C × p

Определим матожидание для нашего примера:

  • M = 10 × 0,15 + 9 × 0,25 + 8 × 0,2 + 7 × 0,15 + 6 × 0,15 + 5 × 0,05 + 4 × 0,05
  • M = 7,75

Итак, наиболее вероятно, что стрелок попадет в зону, дающую 7 очков. Эта зона будет самой простреленной, что является прекрасным результатом наиболее частого попадания. Для любой случайной величины показатель матожидания означает наиболее встречаемое значение или центр всех значений.

Дисперсия

Дисперсия — еще один статистический показатель, иллюстрирующий нам разброс величины. Наша мишень густо изрешечена пулями, а дисперсия позволяет выразить этот параметр численно. Если математическое ожидание демонстрирует центр выстрелов, то дисперсия — их разброс. По сути, дисперсия означает математическое ожидание отклонений значений от матожидания, то есть средний квадрат отклонений. Каждое значение возводится в квадрат для того, чтобы отклонения были только положительными и не уничтожали друг друга в случае одинаковых чисел с противоположными знаками.

D[X] = M[X2] − (M[X])2

Давайте рассчитаем разброс выстрелов для нашего случая:

  • M[X2] = 10× 0,15 + 9× 0,25 + 8× 0,2 + 7× 0,15 + 6× 0,15 + 5× 0,05 + 4× 0,05
  • M[X2] = 62,85
  • D[X] = M[X2] − (M[X])2 = 62,85 − (7,75)2 = 2,78

Итак, наше отклонение равно 2,78. Это означает, что от области на мишени со значением 7,75 пулевые отверстия разбросаны на 2,78 балла. Однако в чистом виде значение дисперсии не используется — в результате мы получаем квадрат значения, в нашем примере это квадратный балл, а в других случаях это могут быть квадратные килограммы или квадратные доллары. Дисперсия как квадратная величина не информативна, поэтому она представляет собой промежуточный показатель для определения среднеквадратичного отклонения — героя нашей статьи.

Среднеквадратическое отклонение

Для превращения дисперсии в логично понятные баллы, килограммы или доллары используется среднеквадратическое отклонение, которое представляет собой квадратный корень из дисперсии. Давайте вычислим его для нашего примера:

S = sqrt(D) = sqrt(2,78) = 1,667

Мы получили баллы и теперь можем использовать их для связки с математически ожиданием. Наиболее вероятный результат выстрела в этом случае будет выражен как 7,75 плюс-минус 1,667. Этого достаточно для ответа, но так же мы можем сказать, что практически наверняка стрелок попадет в область мишени между 6,08 и 9,41.

Стандартное отклонение или сигма — информативный показатель, иллюстрирующий разброс величины относительно ее центра. Чем больше сигма, тем больший разброс демонстрирует выборка. Это хорошо изученный коэффициент и для нормального распределения известно занимательное правило трех сигм. Установлено, что 99,7 % значений нормально распределенной величины лежат в области плюс-минус трех сигм от среднего арифметического.

Наша программа позволяет подсчитать среднее значение выборки без учета их вероятностей. Вам достаточно выбрать необходимое количество элементов и ввести их в ячейки в произвольном порядке.

Рассмотрим на примере

Волатильность валютной пары

Известно, что на валютном рынке широко используются приемы математической статистики. Во многих торговых терминалах встроены инструменты для подсчета волатильности актива, который демонстрирует меру изменчивости цены валютной пары. Конечно, финансовые рынки имеют свою специфику расчета волатильности как то цены открытия и закрытия биржевых площадок, но в качестве примера мы можем подсчитать сигму для последних семи дневных свечей и грубо прикинуть недельную волатильность.

Наиболее волатильным активом рынка Форекс по праву считается валютная пара фунт/иена. Пусть теоретически в течение недели цена закрытия токийской биржи принимала следующие значения:

145, 147, 146, 150, 152, 149, 148.

Введем эти данные в калькулятор и подсчитаем сигму, равную 2,23. Это означает, что в среднем курс японской иены изменялся на 2,23 иены ежедневно. Если бы все было так замечательно, трейдеры заработали бы на таких движениях миллионы.

Заключение

Стандартное отклонение используется в статистическом анализе числовых выборок. Это полезный коэффициент позволяющий оценить разброс данных, так как два набора с, казалось бы, одинаковым средним значением могут быть абсолютно разными по разбросу величин. Используйте наш калькулятор для поиска сигм небольших выборок.