Построение треугольника Паскаля

Результат расчёта
  • {$ item|join:'; ' $}

Треугольник Паскаля — элегантный математический треугольник, представляющий собой бесконечную таблицу биноминальных коэффициентов. Таблица иллюстрирует скрытые соотношения между числами, которые естественным образом возникают в теории чисел, комбинаторике, теории вероятностей и алгебре.

Суть треугольной последовательности

Число 1 — важное число, а 11? Любопытно, что 11 × 11 = 121, 11 × 11 × 11 = 1331, а 11 × 11 × 11 × 11 = 14641. Если выстроить эти числа сверху вниз и представить их в виде отдельных цифр, то получится интересная формация:

  • 1
  • 1 1
  • 1 2 1
  • 1 3 3 1
  • 1 4 6 4 1

Эти цифры — первые строки знаменитого треугольника Паскаля. Далее таблица строится по следующему принципу: по краям записываются единицы, а внутри ряда числа формируются путем суммы цифр, расположенных рядом выше слева и справа от искомых. Данная таблица знаменита в математике своей элегантностью, симметрией и неожиданными связями между числами. Связи таблицы с другими математическими сферами превратили треугольник Паскаля в Священный Грааль математики.

История открытия

Считается, что таблица была открыта Блезом Паскалем в 1653 году, однако происхождение формации гораздо древнее. Первое упоминание о бесконечной треугольной таблице встречается в трудах индийских математиков 10-го века, а наиболее полная информация о треугольнике представлена в работе китайского математика Шицзе, опубликованной в 1303 году. Однако и Шизце лишь упомянул о формации, создателем же треугольника Паскаля считается китайский ученый Ян Хуэй, поэтому в Китае таблица биноминальных коэффициентов носит название «треугольник Хуэя».

Удивительные свойства

Симметрия — очевидное свойство треугольника Паскаля. Если из верхней единицы провести вертикальную прямую, то числа справа и слева будут симметричны. Диагонали треугольника также симметричны. Диагонали вообще обладают рядом уникальных свойств. Если первая диагональ, как восточная, так и западная, представляет собой ряд сплошных единиц, то вторая — ряд натуральных чисел, третья — ряд треугольных чисел, а четвертая — тетраэдрических.

  • Треугольные числа (1, 3, 6, 10…) — это числа, при помощи которых строятся плоские треугольники. Простыми словами, если в двухмерной игре вы захотите составить треугольник из круглых элементов, то вам понадобится выстроить элементы в количестве, советующему треугольным числам: сначала 6 кругов, потом 3, потом 1.
  • Тетраэдрические числа (1, 4, 10, 20…) используются для построения объемных тетраэдров. Проще говоря, если вам понадобится сложить пушечные ядра аккуратной пирамидой, то в основании вам потребуется уложить 20 ядер, на них еще 10, сверху 4 и увенчать пирамиду одним верхним ядром.

Кроме того, если в треугольнике Паскаля четные числа заменить единицами, а нечетные — нулями, то получится треугольник Серпинского — известный фрактал, построенный польским математиком в начале 20 века.

Треугольник Паскаля также имеет удивительную связь с алгеброй. Если мы разложим бином Ньютона вида (1 + x)2, то получим 1 + 2x + x2. Если же это будет (1 + x)3, то в результате мы получим 1 + 3x + 3x2 + x3. Если присмотреться, то биноминальные коэффициенты — это ни что иное как числа из соответствующего ряда треугольника Паскаля.

Построение треугольника Паскаля

Треугольник Паскаля — это бесконечная таблица элементов. При помощи нашего калькулятора вы можете построить таблицу любой размерности, однако не рекомендуется использовать слишком большие числа (n>100), так как столь огромные таблицы не имеют практического применения, а онлайн-калькулятор строит их слишком долго. Помимо элегантных свойств, используемых для решения биноминальных уравнений или построения тетраэдрических последовательностей, таблица Паскаля находит применение в комбинаторике.

Примеры из реальной жизни

Подсчет количества способов

Если на кафедре работают 7 математиков, и троих из них нужно отправить на городскую олимпиаду, то сколькими способами можно это сделать? Это стандартная задача на комбинаторику, в котором важен порядок элементов, то есть вариант «Сидоров, Иванов и Петров» отличается от варианта «Иванов, Петров, Сидоров», хотя выбранная группа математиков одна и та же. Такая ситуация возникает в случае, если преподаватели должны участвовать в разных конкурсах. При «ручном» решении нам пришлось бы использовать стандартные формулы для комбинаторики, однако проще воспользоваться свойствами треугольника Паскаля.

Для ответа на вопрос нам достаточно построить треугольник с n = 10, найти седьмой ряд и третье число в нем. Таким образом, существует 35 способов объединить математиков для поездки на олимпиаду.

Определение вероятности

В корзине лежит 20 шаров, пронумерованных от 1 до 20. Наугад мы берем 3 шара. Какова вероятность, что мы вытащим шары с номерами 5, 12 и 13? Для решения этой задачи нам потребуется построить треугольник Паскаля с n = 20, после чего найти двадцатый ряд и третье число в нем. Вытащить три шара можно 1140 способами. Вероятность наступления нашего события составит 3 из 1140.

Заключение

Треугольник Паскаля — простая таблица, которая таит в себе огромное количество математических тайн. Члены рядов связаны с биноминальными коэффициентами, совершенными числами, числами Фибоначчи, тетраэдрическими и треугольными числами. Используйте наш калькулятор для построения сетки необходимой вам размерности для решения самых разных математических задач.